Please turn JavaScript on

Apple Machine Learning Research

Subscribe in seconds and receive Apple Machine Learning Research's news feed updates in your inbox, on your phone or even read them from your own news page here on follow.it.

You can select the updates using tags or topics and you can add as many websites to your feed as you like.

And the service is entirely free!

Follow Apple Machine Learning Research: Overview - Apple Machine Learning Research

Is this your feed? Claim it!

Publisher:  Unclaimed!
Message frequency:  0.51 / day

Message History

Query Auto-Completion (QAC) is a critical feature of modern search systems that improves search efficiency by suggesting completions as users type. However, existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have poor long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and s...

Read full story
How can we trust the correctness of a learned model on a particular input of interest? Model accuracy is typically measured on average over a distribution of inputs, giving no guarantee for any fixed input. This paper proposes a theoretically-founded solution to this problem: to train Self-Proving models that prove the correctness of their output to a verification algorithm V vi...

Read full story
Large language models (LLMs) now sit in the critical path of search, assistance, and agentic workflows, making semantic caching essential for reducing inference cost and latency. Production deployments typically use a tiered static-dynamic design: a static cache of curated, offline vetted responses mined from logs, backed by a dynamic cache populated online. In practice, both ti...

Read full story
In this paper, we study federated optimization for solving stochastic variational inequalities (VIs), a problem that has attracted growing attention in recent years. Despite substantial progress, a significant gap remains between existing convergence rates and the state-of-the-art bounds known for federated convex optimization. In this work, we address this limitation by establi...

Read full story
Hyperparameter tuning can dramatically impact training stability and final performance of large-scale models. Recent works on neural network parameterisations, such as μP, have enabled transfer of optimal global hyperparameters across model sizes. These works propose an empirical practice of search for optimal global base hyperparameters at a small model size, and transfer to a ...

Read full story